Yesterday I was in a productive mood. "Let's upgrade the ancient Gentoo Linux install on that server that nobody dares to use because the OS is too shoddy", I thought. Since the Gentoo image was from 2005 and never updated, it seemed impossible to upgrade it using normal methods. There were dependencies blocking each other and just an all around awful mess. I downloaded the latest install tarball and decided to just extract it right over the old install. "What is the worst thing that can happen", right?
As it turned out, nothing special happened. It all worked smoothly. Until I ran "emerge" - the package manager for Gentoo. It decided that all those installed packages were quite unnecessary and proceeded to uninstall everything. Everything. Until it could uninstall no more, because it had broken itself.
Challenge
Now I had a system without anything in /bin /sbin /usr/bin, etc. Everything was gone. All that I had left was two remote ssh connections from my desktop which, quite heroically, stayed up despite the best efforts of emerge. I could not open any new connections. The server itself is located on a magical island, far, far away, called Hisingen. I had no intention of making a trip there. Yet.
Ok, what can we do with no binaries?
This is pretty much it:
http://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html
Notice that such practical commands as "ls", "mv", "ed" and "cp" are not built in. This means that we cannot list or copy files. Or rename them. Or move them. Or edit them. "echo" and "cd" is ok, though. Also we can create new files with echo "blabla" > theFile.
"Bwaha! All I have to do is use tab completion to see what files are in a directory". I chuckled triumphantly to myself, my seductive beard dancing in the wind. Luckily tab completion reported that my /bin/ was full of executables. Unluckily /bin/ was not actually full of executables when I tried to run them. It seems that Bash or Linux or someone had cached the tab completion results.
Since I had the Gentoo tbz-image still in the root directory, all I needed was a way to extract that and I would have all my precious programs back.
Remote file copy
OK.. how do I get bzip2 and tar to the server? Well, using echo "...." > file, it is possible to create new files. But how would you write binary data using echo? It turns out that one can write any byte using \x-hexadecimal escape codes. Unfortunately if you write the zero-byte, \x00, echo terminates. Executables or full of zero-bytes so we need a way to write them too. Well, it turns out that echo can write zero-bytes without terminating using octal escape codes - \0000 will do the trick.
I created a Python program for taking a binary file and convert it to several lines of the type:
> echo -en $'\x6e\\0000\x5f\x69\x6e\x69\x74\\0000\x6c\x69\x62\x63\x2e\x73\x6f\x2e\x36\\0000\x66\x66\x6c\x75\x73\x68\\0000\x73\x74\x72\x63\x70\x79\\0000\x66\x63\x68\x6d\x6f\x64\\0000\x65\x78\x69\x74\\0000\x73\x74\x72\x6e\x63\x6d\x70\\0000\x70\x65\x72\x72\x6f\x72\\0000\x73\x74\x72\x6e\x63\x70\x79\\0000\x73\x69\x67\x6e\x61\x6c\\0000\x5f\x5f\x73\x74\x61\x63\x6b\x5f\x63\x68\x6b\x5f\x66\x61\x69\x6c\\0000\x73\x74\x64\x69\x6e\\0000\x72\x65\x77' > myfile
> echo -en $'\x69\x6e\x64\\0000\x69\x73\x61\x74\x74\x79\\0000\x66\x67\x65\x74\x63\\0000\x73\x74\x72\x6c\x65\x6e\\0000\x75\x6e\x67\x65\x74\x63\\0000\x73\x74\x72\x73\x74\x72\\0000\x5f\x5f\x65\x72\x72\x6e\x6f\x5f\x6c\x6f\x63\x61\x74\x69\x6f\x6e\\0000\x5f\x5f\x66\x70\x72\x69\x6e\x74\x66\x5f\x63\x68\x6b\\0000\x66\x63\x68\x6f\x77\x6e\\0000\x73\x74\x64\x6f\x75\x74\\0000\x66\x63\x6c\x6f\x73\x65\\0000\x6d\x61\x6c\x6c\x6f\x63\\0000\x72\x65\x6d' >> myfile
> echo -en $'\x6f\x76\x65\\0000\x5f\x5f\x6c\x78\x73\x74\x61\x74\x36\x34\\0000\x5f\x5f\x78\x73\x74\x61\x74\x36\x34\\0000\x67\x65\x74\x65\x6e\x76\\0000\x5f\x5f\x63\x74\x79\x70\x65\x5f\x62\x5f\x6c\x6f\x63\\0000\x73\x74\x64\x65\x72\x72\\0000\x66\x69\x6c\x65\x6e\x6f\\0000\x66\x77\x72\x69\x74\x65\\0000\x66\x72\x65\x61\x64\\0000\x75\x74\x69\x6d\x65\\0000\x66\x64\x6f\x70\x65\x6e\\0000\x66\x6f\x70\x65\x6e\x36\x34\\0000\x5f\x5f\x73\x74\x72\x63' >> myfile
> echo -en $'\x61\x74\x5f\x63\x68\x6b\\0000\x73\x74\x72\x63\x6d\x70\\0000\x73\x74\x72\x65\x72\x72\x6f\x72\\0000\x5f\x5f\x6c\x69\x62\x63\x5f\x73\x74\x61\x72\x74\x5f\x6d\x61\x69\x6e\\0000\x66\x65\x72\x72\x6f\x72\\0000\x66\x72\x65\x65\\0000\x5f\x65\x64\x61\x74\x61\\0000\x5f\x5f\x62\x73\x73\x5f\x73\x74\x61\x72\x74\\0000\x5f\x65\x6e\x64\\0000\x47\x4c\x49\x42\x43\x5f\x32\x2e\x34\\0000\x47\x4c\x49\x42\x43\x5f\x32\x2e\x33\\0000\x47\x4c\x49' >> myfile
Taking care to escape all the backslashes properly turned out to be a bit of a challenge. Fun fact: if you write the hex code for backslash twice, \x53\x53, Bash will first convert them to backslash and then echo will interpret them as a new escape code and convert them to one backslash.
Now I could cut and paste (very) small binaries, but I needed to paste a few megabytes. "Why a few megabytes?" you wonder. Well, since emerge removed all libraries as well, I had to compile the executables with all libraries linked statically. As it turns out, this makes a small utility much larger.
Enter Konsole and DBUS
Konsole is a wonderful terminal program. Not only can I write stuff in it and make the text green on black and pretend I am Neo from "the Matrix", I can also control it programmatically via DBUS. This means that I could write a Python program that sends characters to one of my sessions. I had to divide the file up into several messages of the form I showed above, and then send them. If I sent the messages too quickly, they got garbled and everything became a mess, so after each message I had to sleep for a short time.
Using this method, I reached the staggering speed of 1K (yes, a thousand bytes) per second. Not quite as snappy as my over fifteen year old 14.4K modem, that could in theory reach 14400 bits per seconds.
I think that the final program turned out to be quite useful. Using it, I can send a file from one terminal to another.
Run, Forest, run!
A small problem turned up. How do I execute my executables? Chmod is not accessible and umask, which is a Bash builtin, just sets the maximum allowed privileges, rather than actually deciding how new files are created. As far as I know this problem is unsolvable, if not for a tiny cheat.
If you pipe text into a file that is already executable, the resulting file will be executable, even if you overwrite the old file with ">". Since we had a few executable script files lying around in /home, which emerge could not uninstall, it was a simple matter of finding an executable script file and overwriting it.
If I had not had any executables, I still hoped that /proc would contain executable links to the still running programs, and that I somehow could pick an unimportant one (without knowing which is which, since I still cannot execute ls or cat or anything like that, remember?) and overwrite it. If Linux would let me.
Using my trans-terminal copier, I managed to get the 800K busybox (a wonderful tool, which emulates all the standard Linux commands and then some) to my broken server, under the guise "feedback.py". This turned out to pose a new problem, since busybox refuses to run under any other name than busybox or one of it's commands. This is because busybox will check under what name it was called and emulate that command. Feedback.py was not one of the builtins, apparently. Now I needed a way to rename the file to busybox again, so I had to statically compile GNU coreutils (./configure LDFLAGS = "-static" is your friend) and transfer "cp". All 700K of it.
Summing up
Even if I had not had a Gentoo install image lying around, it would not have posed a problem by now, since busybox includes both wget and ftp.
I extracted my install image and without doing anything further, I could suddenly make new ssh connections again! Feeling quite heroic, I decided to blog about it, since someone else (or I in the future, God forbid) might find it useful. And here we are.
Since the terminal-copy program could also conceivably be useful for someone else, I will post it somewhere public.